If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+12x+10=0
a = -16; b = 12; c = +10;
Δ = b2-4ac
Δ = 122-4·(-16)·10
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-28}{2*-16}=\frac{-40}{-32} =1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+28}{2*-16}=\frac{16}{-32} =-1/2 $
| 16x+19=17x+5 | | 13+p=30+2p | | a=16(1/2(16)-1) | | 2w-12=24 | | 2a+94=3a+44 | | |4x-8|=|2x+1| | | 2a-89=a-9 | | b+44=2b+40 | | x/2-1/590-x=45 | | 3(u-3)=-8u+2 | | 50+x=92 | | x/2-1/5x90-x=45 | | 9u-49=7u-35 | | 4x+2=1/2x+7 | | 46=-2x | | a+18=19a | | 50x^2=20x | | 4z+31=12z-65 | | (3x-2)^2-9=0 | | 3x-57=18 | | 2a-54=a+44 | | 1876=75a+346(-9,841) | | 13y-63=12y-51 | | 28+2p=76 | | v+24=3v-36 | | 2x-3+7x=-24 | | z-39=2z-96 | | 7/4w-12+1=-(4/w-3) | | 6x+(5x+10)=180 | | x+65=4x+59 | | 18p=396 | | 32/3=1/5p |